Bridging the Gap

TransMed course applies translational solutions to unmet medical needs

Traditional healer Makhosi Mbhele, who hosted students in her home, wraps a shawl around graduate student Golnaz Morad.

Traditional healer Makhosi Mbhele, who hosted students in her home, wraps a shawl around graduate student Golnaz Morad.

The music was so loud Eileen Sun could feel the drums thrumming in her chest. With a dozen fellow students, she was witnessing a traditional healing ceremony in rural South Africa, part of fieldwork for TransMed, a Harvard Medical School summer course on translational medicine offered through the HMS Office of Global Programs.

The healers danced, calling on spirits to help their patients. They presented scarves in vibrant colors to their guests before sharing a feast with them—one for which a cow had been sacrificed earlier in the week.

Sun saw firsthand how TransMed’s hosts at Edendale Hospital in KwaZulu-Natal were bridging the gap between Western medicine and traditional healing. In the countryside, the healers are the first choice for many people when they fall ill.

In a region where 37.4 percent of the population lives with HIV infection, these healers have been enlisted by a nonprofit program at the hospital, iTEACH (Integration of TB in Education and Care for HIV/AIDS), ), run by Krista Dong, HMS lecturer on medicine at Massachusetts General Hospital, to refer people to physicians for testing and, if the results are positive, to encourage them to take antiretroviral medications.

It took respectful relationship building to bridge the gulf between traditional and modern medicine. Sun saw a similar spirit of collaboration in FRESH (Females Rising through Empowerment, Support, and Health). The program enrolls young women when they are at highest risk for HIV infection in a study that screens their blood samples for potential infection and in exchange offers them education and employment skills training. The project is a collaboration with the Ragon Institute of MGH, MIT and Harvard.

“Behind each sample, there’s a story,” said Sun, a doctoral student studying RNA viruses at Harvard’s Program in Virology and in the Leder Human Biology and Translational Medicine Program. “The trip opened up a whole new dimension to how I’ve viewed scientific research. We saw firsthand how weaving science with a social mission—women’s empowerment—can be life changing for both researchers and research participants. The trip was inspirational.”

TransMed students joined their hosts after a traditional healing ceremony in KwaZulu-Natal, South Africa. Image: iTEACH

The students’ trip to South Africa followed two weeks of boot camp-style classes at HMS.

The mission of the course: to teach students how to assess unmet medical needs, follow the discovery process that uncovers the causes of disease, and examine how disease is detected, diagnosed and treated.

On the HMS Quad, students learned about the gap between basic discoveries and approved therapies. “The valley of death” is a term used in drug development for the abyss where promising drug leads can languish, never reaching the people they were intended to help.

The TransMed course brought in experts from the biotech and pharmaceutical industries who had traversed that chasm. They shared their stories in the inaugural session of a course that its director, Jagesh Shah, hopes will be repeated next summer.

It all started with identifying unmet medical needs.

“The basic scientists, the clinicians, the industry people and the regulatory people—every single one of these groups has a very different view of what an unmet medical need is,” said Shah, HMS associate professor of systems biology. “That was a design principle of the course.”

Compressed into three weeks, 24 students learned how disease mechanisms are discovered and how the drug discovery pipeline is primed to treat them. Students came not only from Harvard but also from China, South Africa and Zimbabwe.

On the Quad, the students rotated through four perspectives—basic scientist, clinician, industry professional or regulatory scientist—as they learned about three drugs (statins, Vioxx and Gleevec) and two diseases (Alzheimer’s and polycystic kidney disease).

The course also addressed how drug resistance, a well-known problem in infectious disease as well as cancer, plays out differently depending on where the patient lives.

Don Coen, HMS professor of biological chemistry and molecular pharmacology, led the discussion during a session in which HMS faculty presented cases on drug resistance, including one presented by Jonathan Li, HMS assistant professor of medicine at Brigham and Women’s Hospital, on drug-resistant mutations in the virus that causes AIDS. Certain of these mutant viruses are resistant to some older HIV drugs, but have decreased ability to replicate in the body.

The students from Africa pointed out that those older drugs are still used there because newer ones are not available for doctors to prescribe.

“Even though the viruses will evolve to be resistant to these drugs, the patient will be less ill than if you didn’t do anything, largely because of the decreased replication. In this country you would use newer combinations of drugs,” Coen said. “These drugs are clearly being used in the developing world setting. So in this course, we got the different perspectives of people on the ground in Africa, which was really enlightening.”

Felix Manyeruke, a physician from Zimbabwe who plans to specialize in respiratory medicine, sought out the course to explore translational medicine and the role of clinicians doing basic science and clinical research in developing countries.

“I learnt how we as clinicians should be involved in identifying clinical problems and how we can interact with researchers in basic sciences and engineering to be able to come up with a solution which can be used to benefit the patient,” he said in an email interview. “Patient advocacy was one new area which I was exposed to and I got to appreciate its value in driving drug development and drug regulation.”

Shah, the course director, said all the students are hungry to learn what they can do to advance drug discovery and diagnostic tool development to help patients wherever they live.

“We think about making more drugs that work, but actually if we didn’t make as many drugs that didn’t work, we would also save a lot of money,” said Shah, who favors borrowing “failure analysis,” a method widely used in engineering disciplines to learn from mistakes.

The TransMed course itself was an experiment.

“Strictly speaking, in three weeks, no one’s an expert,” Shah said. “But at the end, the students told us in their assessments that they had a better sense that the path for each drug is slightly different, but each study of how it works is an important scientific problem unto itself.”

Sun, who is in her sixth year as a doctoral student in virology, said TransMed is pushing her closer to translational research.

“Having participated in the TransMed class, I’m motivated more than ever to pursue research that will change people’s lives.”

The HMS TransMed program was supported by the Office of Global Programs and the Paul Dudley White Fund. The TransMed Global Component was facilitated by the Ragon Institute of MGH, MIT and Harvard and the HIV Pathogenesis Programme at Nelson R. Mandela School of Medicine at the University of Kwa-Zulu Natal (UKZN) in Durban, South Africa Co-Directors of Global Component are Filippos Porichis, instructor in medicine at Mass General, (Boston) and Victoria Kasprowicz, instructor in medicine at Mass General (Durban).