Paper Chase

Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first.

Cell reports
Dec 04, 2018 25 (10) 2919-2934.e8
Vol. 25, Issue 10, Medline Page 2919-2934.e8

Development and Application of FASA, a Model for Quantifying Fatty Acid Metabolism Using Stable Isotope Labeling.

Authors: Argus JP, Wilks MQ, Zhou QD, Hsieh WY, Khialeeva E, Hoi XP, Bui V, Xu S, Yu AK, Wang ES, Herschman HR, Williams KJ, Bensinger SJ
Abstract:
It is well understood that fatty acids can be synthesized, imported, and modified to meet requisite demands in cells. However, following the movement of fatty acids through the multiplicity of these metabolic steps has remained difficult. To better address this problem, we developed Fatty Acid Source Analysis (FASA), a model that defines the contribution of synthesis, import, and elongation pathways to fatty acid homeostasis in saturated, monounsaturated, and polyunsaturated fatty acid pools. Application of FASA demonstrated that elongation can be a major contributor to cellular fatty acid content and showed that distinct pro-inflammatory stimuli (e.g., Toll-like receptors 2, 3, or 4) specifically reprogram homeostasis of fatty acids by differential utilization of synthetic and elongation pathways in macrophages. In sum, this modeling approach significantly advances our ability to interrogate cellular fatty acid metabolism and provides insight into how cells dynamically reshape their lipidomes in response to metabolic or inflammatory signals.