Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Genetic disruption of CD8+ Treg activity enhances the immune response to viral infection.

Proc. Natl. Acad. Sci. U.S.A.. Dec 24, 2013;110(52):21089-94.
Holderried TA, Lang PA, Kim HJ, Cantor H.

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215.


The immunological interactions that regulate the T-cell response to chronic viral infection are insufficiently understood. Here we study a cellular interaction that may enhance the antiviral immune response and constrain immunopathology. We analyze the contribution of Qa-1-restricted CD8(+) regulatory T cells (Treg cells) to antiviral immunity after infection by lymphocytic choriomeningitis virus. These CD8(+) Treg cells recognize and eliminate target cells through an interaction with the murine class Ib MHC molecule Qa-1 (HLA-E in humans). Using Qa-1 mutant mice (B6.Qa-1-D227K [B6-DK]) that harbor a single mutation that abrogates binding of Qa-1 peptide to the CD8-TCR (T-cell receptor) complex, we show that disruption of immune suppression mediated by CD8(+) Treg cells results in robust antiviral immune responses in both acute and chronic viral infection. Enhanced antiviral responses of B6-DK mice were accompanied by increased control of virus, reduced tissue inflammation in the acute phase, and dramatic alleviation of disease in the chronic phase. In addition, CD8(+) effector T cells in B6-DK mice displayed a less exhausted phenotype characterized by decreased expression of programmed cell death 1 (PD-1), LAG3 (CD223), and 2B4 (CD244) and increased expression of NKG2D (CD314) and killer cell lectin-like receptor subfamily G member 1 (KLRG1). Enhanced antiviral immunity in B6-DK mice reflected, in part, reduced inhibition of CD8(+) effector cells by CD8(+) Treg cells. These findings indicate that direct inhibition of effector CD8(+) T cells by Qa-1-restricted CD8(+) Treg cells results in increased disease severity and delayed recovery. These data suggest that depletion or inactivation of CD8(+) Treg cells represents a potentially effective strategy to enhance protective immunity to chronic viral infection.