Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Imperfect optics may be the eye's defence against chromatic blur.

Nature. May 09, 2002;417(6885):174-6.
McLellan JS, Marcos S, Prieto PM, Burns SA.

Schepens Eye Research Institute, 20 Staniford Street, Boston, Massachusetts 02114, USA.


The optics of the eye cause different wavelengths of light to be differentially focused at the retina. This phenomenon is due to longitudinal chromatic aberration, a wavelength-dependent change in refractive power. Retinal image quality may consequently vary for the different classes of cone photoreceptors, cells tuned to absorb bands of different wavelengths. For instance, it has been assumed that when the eye is focused for mid-spectral wavelengths near the peak sensitivities of long- (L) and middle- (M) wavelength-sensitive cones, short-wavelength (bluish) light is so blurred that it cannot contribute to and may even impair spatial vision. These optical effects have been proposed to explain the function of the macular pigment, which selectively absorbs short-wavelength light, and the sparsity of short-wavelength-sensitive (S) cones. However, such explanations have ignored the effect of monochromatic wave aberrations present in real eyes. Here we show that, when these effects are taken into account, short wavelengths are not as blurred as previously thought, that the potential image quality for S cones is comparable to that for L and M cones, and that macular pigment has no significant function in improving the retinal image.