Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Mitotic recombination map of 13cen-13q14 derived from an investigation of loss of heterozygosity in retinoblastomas.

Proc. Natl. Acad. Sci. U.S.A.. Mar 16, 1999;96(6):2952-7.
Hagstrom SA, Dryja TP.

Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.


Loss of heterozygosity at tumor-suppressor loci is an important oncogenic mechanism first discovered in retinoblastomas. We explored this phenomenon by examining a set of matched retinoblastoma and leukocyte DNA samples from 158 patients informative for DNA polymorphisms. Loss of heterozygosity at the retinoblastoma locus (13q14) was observed in 101 cases, comprising 7 cases with a somatic deletion causing hemizygosity and 94 with homozygosity (isodisomy). Homozygosity was approximately equally frequent in tumors from male and female patients, among patients with a germ-line vs. somatic initial mutation, and among patients in whom the initial mutation occurred on the maternal vs. paternal allele. A set of 75 tumors exhibiting homozygosity was investigated with markers distributed in the interval 13cen-13q14. Forty-one tumors developed homozygosity at all informative marker loci, suggesting that homozygosity occurred through chromosomal nondisjunction. The remaining cases exhibited mitotic recombination. There was no statistically significant bias in apparent nondisjunction vs. mitotic recombination among male vs. female patients or among patients with germ-line vs. somatic initial mutations. We compared the positions of somatic recombination events in the analyzed interval with a previously reported meiotic recombination map. Although mitotic crossovers occurred throughout the assayed interval, they were more likely to occur proximally than a comparable number of meiotic crossovers. Finally, we observed four triple-crossover cases, suggesting negative interference for mitotic recombination, the opposite of what is usually observed for meiotic recombination.