Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

The structural and functional diversity of dystrophin.

Nat. Genet.. 4 1, 1993;3(4):283-91.
Ahn AH, Kunkel LM.

Program in Neuroscience, Harvard Medical School, Boston, Massachusetts.

Abstract:

Duchenne and Becker muscular dystrophies are caused by defects of the dystrophin gene. Expression of this large X-linked gene is under elaborate transcriptional and splicing control. At least five independent promoters specify the transcription of their respective alternative first exons in a cell-specific and developmentally controlled manner. Three promoters express full-length dystrophin, while two promoters near the C terminus express the last domains in a mutually exclusive manner. Six exons of the C terminus are alternatively spliced, giving rise to several alternative forms. Genetic, biochemical and anatomical studies of dystrophin suggest that a number of distinct functions are subserved by its great structural diversity. Extensive studies of dystrophin may lead to an understanding of the cause and perhaps a rational treatment for muscular dystrophy.