Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Dystrophin is a tumor suppressor in human cancers with myogenic programs.

Nat. Genet.. 05 04, 2014;46(6):601-6.
Wang Y, Marino-Enriquez A, Bennett RR, Zhu M, Shen Y, Eilers G, Lee JC, Henze J, Fletcher BS, Gu Z, Fox EA, Antonescu CR, Fletcher CD, Guo X, Raut CP, Demetri GD, van de Rijn M, Ordog T, Kunkel LM, Fletcher JA.

Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Abstract:

Many common human mesenchymal tumors, including gastrointestinal stromal tumor (GIST), rhabdomyosarcoma (RMS) and leiomyosarcoma (LMS), feature myogenic differentiation. Here we report that intragenic deletion of the dystrophin-encoding and muscular dystrophy-associated DMD gene is a frequent mechanism by which myogenic tumors progress to high-grade, lethal sarcomas. Dystrophin is expressed in the non-neoplastic and benign counterparts of GIST, RMS and LMS tumors, and DMD deletions inactivate larger dystrophin isoforms, including 427-kDa dystrophin, while preserving the expression of an essential 71-kDa isoform. Dystrophin inhibits myogenic sarcoma cell migration, invasion, anchorage independence and invadopodia formation, and dystrophin inactivation was found in 96%, 100% and 62% of metastatic GIST, embryonal RMS and LMS samples, respectively. These findings validate dystrophin as a tumor suppressor and likely anti-metastatic factor, suggesting that therapies in development for muscular dystrophies may also have relevance in the treatment of cancer.