Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

A promiscuous lipid-binding protein diversifies the subcellular sites of toll-like receptor signal transduction.

Cell. Feb 13, 2014;156(4):705-16.
Bonham KS, Orzalli MH, Hayashi K, Wolf AI, Glanemann C, Weninger W, Iwasaki A, Knipe DM, Kagan JC.

Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA. Electronic address: jonathan.kagan@childrens.harvard.edu.

Abstract:

The Toll-like receptors (TLRs) of the innate immune system are unusual in that individual family members are located on different organelles, yet most activate a common signaling pathway important for host defense. It remains unclear how this common signaling pathway can be activated from multiple subcellular locations. Here, we report that, in response to natural activators of innate immunity, the sorting adaptor TIRAP regulates TLR signaling from the plasma membrane and endosomes. TLR signaling from both locations triggers the TIRAP-dependent assembly of the myddosome, a protein complex that controls proinflammatory cytokine expression. The actions of TIRAP depend on the promiscuity of its phosphoinositide-binding domain. Different lipid targets of this domain direct TIRAP to different organelles, allowing it to survey multiple compartments for the presence of activated TLRs. These data establish how promiscuity, rather than specificity, can be a beneficial means of diversifying the subcellular sites of innate immune signal transduction.