Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Monoclonal antibody and ligand binding sites of the T cell erythrocyte receptor (CD2).

Nature. 10 4, 1987;329(6142):842-6.
Peterson A, Seed B.

Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.

Abstract:

The human T cell erythrocyte receptor (CD2 antigen) allows thymocytes and mature T cells to adhere to thymic epithelium and target cells through a cell surface protein, LFA-3 (refs 1-6). Monoclonal antibodies recognizing CD2 can either block adhesion or, in certain combinations, induce an antigen-independent T cell activation. We have identified the binding sites for 16 monoclonal antibodies against CD2 by a rapid and generally applicable mutational analysis. The binding sites fall in three discrete regions: antibodies that participate in activation and block erythrocyte adhesion bind to the first region; antibodies that block adhesion bind to the second region; and antibodies that participate in activation but do not block adhesion bind to the third region. A large number of mutations selected for loss of antibody reactivity in the first two regions also weaken the CD2-LFA-3 interaction. Good agreement was observed between mutational lesions blocking LFA-3 binding and lesions blocking binding by activating antibodies, which supports the view that such antibodies induce T cell activation by mimicking the effect of LFA-3 binding. CD2 sequences that participate in LFA-3 binding correspond to immunoglobulin variable region hypervariable sequences when the homologous domains are aligned.