Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance.

Nat. Med.. 12 15, 2011;18(9):1350-8.
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, Schafer ZT, Evans RM, Suda T, Lee CH, Pandolfi PP.

Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, Massachusetts, USA.

Abstract:

Stem-cell function is an exquisitely regulated process. Thus far, the contribution of metabolic cues to stem-cell function has not been well understood. Here we identify a previously unknown promyelocytic leukemia (PML)–peroxisome proliferator-activated receptor δ (PPAR-δ)–fatty-acid oxidation (FAO) pathway for the maintenance of hematopoietic stem cells (HSCs). We have found that loss of PPAR-δ or inhibition of mitochondrial FAO induces loss of HSC maintenance, whereas treatment with PPAR-δ agonists improved HSC maintenance. PML exerts its essential role in HSC maintenance through regulation of PPAR signaling and FAO. Mechanistically, the PML–PPAR-δ–FAO pathway controls the asymmetric division of HSCs. Deletion of Ppard or Pml as well as inhibition of FAO results in the symmetric commitment of HSC daughter cells, whereas PPAR-δ activation increased asymmetric cell division. Thus, our findings identify a metabolic switch for the control of HSC cell fate with potential therapeutic implications.