Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Self-assembly of filopodia-like structures on supported lipid bilayers.

Science. Sep 10, 2010;329(5997):1341-5.
Lee K, Gallop JL, Rambani K, Kirschner MW.

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

Abstract:

Filopodia are finger-like protrusive structures, containing actin bundles. By incubating frog egg extracts with supported lipid bilayers containing phosphatidylinositol 4,5 bisphosphate, we have reconstituted the assembly of filopodia-like structures (FLSs). The actin assembles into parallel bundles, and known filopodial components localize to the tip and shaft. The filopodia tip complexes self-organize--they are not templated by preexisting membrane microdomains. The F-BAR domain protein toca-1 recruits N-WASP, followed by the Arp2/3 complex and actin. Elongation proteins, Diaphanous-related formin, VASP, and fascin are recruited subsequently. Although the Arp2/3 complex is required for FLS initiation, it is not essential for elongation, which involves formins. We propose that filopodia form via clustering of Arp2/3 complex activators, self-assembly of filopodial tip complexes on the membrane, and outgrowth of actin bundles.