Paper Chase is a research database designed to offer abstracts of research articles published in journals that have a highly rated impact factor as determined by ISI Impact Factor and PageRank. Abstracts are organized by date, with the most recently published papers listed first. 

Paper Chase

Phosphoinositide 3-kinase regulatory subunit p85alpha suppresses insulin action via positive regulation of PTEN.

Proc. Natl. Acad. Sci. U.S.A.. Aug 8, 2006;103(32):12093-7.
Taniguchi CM, Tran TT, Kondo T, Luo J, Ueki K, Cantley LC, Kahn CR.

Cellular and Molecular Physiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.


The phosphoinositide 3-kinase (PI3K) pathway is central to the metabolic actions of insulin on liver. Here, we show that mice with a liver-specific deletion of the p85alpha regulatory subunit of PI3K (L-Pik3r1KO) exhibit a paradoxical improvement of hepatic and peripheral insulin sensitivity. Although PI3K enzymatic activity is diminished in L-Pik3r1KO livers because of a reduced level of regulatory and catalytic subunits of PI3K, insulin-stimulated Akt activity is actually increased. This increased Akt activity correlates with increased phosphatidylinositol (3,4,5)-trisphosphate levels which are due, at least in part, to diminished activity of the (3,4,5)-trisphosphate phosphatase PTEN. Thus, the regulatory subunit p85alpha is a critical modulator of insulin sensitivity in vivo not only because of its effects on PI3K activation, but also as a regulator of PTEN activity.